***** CONFIDENTIAL ***** ***** PRE-DECISIONAL DOCUMENT *****

SUMMARY SCORESHEET FOR COMPUTING

PROJECTED HRS SCORE

SITE NAME:	Omega Oil Company	Lat/Long:	34° 03' 36"/117° 45' 30"
CITY, COUNTY:	Pomona, Los Angeles	T/R/S:	1 South/ 9 West/ Section 26
EPA ID #:	CAD009661844		
PROGRAM ACCOU	NT #: FCA1567RAA		
EVALUATOR:	Gary Jensen, ICF To	echnology, Inc.	DATE: February 22, 1991
THIS SCORESHEET	'IS FOR A: PA SSI	LSI	
OTHER: RCRA PA	4		
RCRA STATUS (Che	eck all that apply):		
Generator _	Small Quantity Generator	Transpo	orter X TSDF
Not listed (date	of printout): _/_/_		
STATE SUPERFUNI	STATUS:		
REP (/ /)	WOADE (/ /)	V No Sta	to Comparison Control (01/10/00)

PROJECTED PROPOSED REVISED HRS SCORE	S pathway	S ² pathway
Groundwater Migration Pathway Score (Sgw)	4.37	19.08
Surface Water Migration Pathway Score (S _{sw})	0.00	0.00
Soil Exposure Pathway Score (S _s)	24.62	606.14
Air Migration Pathway Score (Sa)	0.67 -	0.45
$S_{a}^{2} + S_{gw}^{2} + S_{sw}^{2} + S_{s}^{2}$		625.67
$(S_a^2 + S_{gw}^2 + S_{sw}^2 + S_s)/4$		156.40
$((S_a^2 + S_{gw}^2 + S_{sw}^2 + S_s^2)/4)^{1/2}$		12.51

Pathways not evaluated (explain): Groundwater to surface water pathway not evaluated because the top of the uppermost aquifer is below the bottom of surface water bodies within 1 mile.

	Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
67	Release		MY TH		
1.	Observed Release	550	0	1	E
2.	Potential to Release*			Bloggage of	
2a.	Containment	10	10	2	Н
2b.	Net Precipitation	10	3	3	E
2c.	Depth to Aquifer	5	3	4	H
2d.	Travel Time	35	5	4	Н
2e.	Potential to Release (Lines 2a x (2b+2c+2d))	500	110		E
3.	Likelihood of Release (Higher of Lines 1 or 2e)	550	110		E
	Waste Characteristics				
4.	Toxicity/Mobility	N/A	200	5	E
5.	Hazardous Waste Quantity	N/A	10	6	E
6.	Waste Characteristics	100	6		
	Targets			and and	
7.	Maximally Exposed Individual	50	20	7	Н
8.	Population*				
8a.	Level I Concentrations	N/A	0	1	E
8ъ.	Level II Concentrations	N/A	0	1	E
8c.	Potential Contamination*	N/A	521	8, see calc.	Е
8d.	Population (Lines 8a+8b+8c)	N/A	521	8, see calc.	Е
9.	Resources	5	5	9	E
10.	Wellhead Protection Area	20	0	10	Н
11.	Targets (Lines 7+8d+9+10)	N/A	546		E
12. [(Li	Aquifer Score ines 3 x 6 x 11) / 82,500]**	100	4.37		
5.00 mile	Groundwater Migration Pathway Score				
	Pathway Score (Sgw), 100 ghest Value from Line 12 for all aquifers aluated)	100	4.37		

Use additional tables

^{**} These scores are not to be rounded to the nearest integer.

GROUNDWATER

Substance	Toxicity	Mobility	Persistence	Bioaccumulation	Ecosystem Toxicity
Naphthalene	1,000	0.2	0.4	500	1,000
Ругепе	0	2 x 10 ⁻⁹	1	50	0
Benz(a)anthracene	0	2 x 10 ⁻⁹	1	50,000	10,000
Benzo(a)pyrene	10	2 x 10 ⁻⁹	1	50,000	10,000
Lead	10,000	2 x 10 ⁻⁹	1	5,000	1,000
Toluene	10	0.01	0.4	50	100
			(p)		
					100
			4.00		

AOUNDWATER PATHWAY CALCULATI 3

2. Potential to Release

(T) Thickness of Layer (ft)	(HC) Hydraulic Conductivity (cm/sec)	
76	10-8	
65	10-4	
	of Layer (ft)	

Lowest (HC) = 10⁻⁸ Thickness of Layers With Lowest (HC) = 76 feet

Travel Time Factor Value (Table 3-7) = 5

Depth to Aquifer = 132 feet Depth to Aquifer Factor Value (Table 3-5) = 3

Reference: Jensen, Gary, ICF Technology Inc., and Skvarek, Andy, City of Pomona Water Department. Telephone

conversation. October 16, 1990.

8. Population

	Actual Contamination							
Well Identifier	Contaminant Detected	Concentration (note units)	Benchmark	(A) Apportioned Population Served	(B) Level Multipliers	(A x B)		

Multipllers	
Level I = 10	Sum (A x B) Level I
Level II = 1	Sum (A x B) Level II

No. of Concession, Name of Street, Str		 	
The second secon			
D . C			
Reference:			
TIOIOI OTIOO!			

8. Populations

	Potential C	Contamination	
Distance (miles)	Number of Wells	(P) Population	Distance-Weighted Population Value (DWPV) (Table 3-12)
>0 to 1/4	1	4,286	5,214
>1/4 to 1/2	0	0	0
>1/2 to 1	0	0	0
>1 to 2	0	0	0
>2 to 3	0	0	0
>3 to 4	0	0	0
			Sum (DWPV) = 5,214

Potential contamination = Sum (DWPV) = 521

Reference: Jensen, Gary, ICF Technology Incorporated, and Sihler, Charles, City of Pomona Water District.
Telephone conversation. December 10, 1990.

SURFACE WATER MIGRATION PATHWAY SCORESHEET Overland/Flood Component

Drinking Water Threat

	Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
	Rejease				
1.	Observed Release	550	0	11	Е
2.	Potential to Release by Overland Flow				
	2a. Containment	10	10	12	Н
	2b. Runoff	25	1	13	Е
	2c. Distance to Surface Water	25	25	14	Н
	2d. Potential to Release by Overland Flow (Lines 2a x (2b+2c))	500	260		E
3.	Potential to Release by Flood				
1	3a. Containment (Flood)	10	10	15	Н
	3b. Flood Frequency	50	25	16	E
	3c. Potential to Release by Flood (Lines 3a x 3b)	500	250		E
4.	Potential to Release (Lines 2d + 3c, subject to a maximum of 500)	500	500		E
5.	Likelihood of Release (Higher of Lines 1 or 4)	550	500		E
	Waste Characteristics				
6.	Toxicity/Persistence	N/A	10,000	5	E
7.	Hazardous Waste Quantity	N/A	10	6	E
8,	Waste Characteristics (6 x 7, then Table 2-7)	100	18		Е
	Targets		V 1813		
9.	Maximally Exposed Individual	50	0	10	TY
	Population*	50	U	17	Н
	10a. Level I Concentrations	N/A	0	17	Н
	10b. Level II Concentrations	N/A	0	17	н
	10c. Potential Contamination	N/A	0	17	Н
	10d. Population (Lines 10a+10b+10c)	N/A	0		Н

SURFACE W OR MIGRATION PATHWAY SCORESHE (CONTINUED) Overland/Flood Component

Drinking Water Threat (Concluded)

Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
11. Resources	5	0	17	Н
12. Targets (Lines 9+10d+11)	N/A	0		н
Drinking Water Threat Score				
13. Drinking Water Threat [(Lines 5 x 8 x 12) / 82,500, subject to a maximum of 100)]	100	0		Н
HUMAN FOOD CHAIN THREAT				
Likelihood of Release				
14. Likelihood of Release (Same Value as Line 5)	550	500		Е
Waste Characteristics				
15. Toxicity/Persistence/Bioaccumulation	N/A	5 x 10 ⁷	31	Е
16. Hazardous Waste Quantity	N/A	10	6	Е
17. Waste Characteristics (Table 2-7)	1,000	56		E
Targets				
18. Food Chain Individual	50	0	17	Н
19. Population*				
19a. Level I Concentrations	N/A	0	17	Н
19b. Level II Concentrations	N/A	0	17	Н
19c. Potential Human Food Chain Contamination	N/A	0	17	Н
19d. Population (Lines 19a+19b+19c)	N/A	0		Н
20. Targets (Lines 18c+19d)	N/A	0		Н
Human Food Chain Threat Score				
21. Human Food Chain Threat [(Lines 14 x 17 x 20)/ 82,500, subject to a maximum of 100]	100	0		Е

Environmental Threat

Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
Environmental Threat				
Likelihood of Release				
22. Likelihood of Release (Same Value as Line 5)	550	500		Е
Waste Characteristics				
23. Ecosystem Toxicity/Persistence/Bioaccumulation	N/A	5 x 10 ⁸	31	Е
24. Hazardous Waste Quantity	N/A	10	6	Е
25. Waste Characteristics (Table 2-7)	1,000	180		Е
Targets				
26. Sensitive Environments*				
26a. Level I Concentrations	N/A	0	18	Е
26b. Level II Concentrations	N/A	0	18	Е
26c. Potential Contamination	N/A	0	18	E
26d. Sensitive Environments (Lines 26a + 26b + 26c))	N/A	0		E
27. Targets (Value from Line 26d)	N/A	0		Е
Environmental Threat Score				
28. Environmental Threat [(Lines 22 x 25 x 27) / 82,500, subject to a maximum of 60]	60	0		
SURFACE WATER OVERLAND/FLOOD COMPONENT SCORE FOR A WATERSHED				
29. Watershed Score** [(Lines 13+21+28), subject to a maximum of 100]	100	0		
SURFACE WATER OVERLAND/FLOOD COMPONENT SCORE				
30. Component Score** (Sof), (Highest of score from Line 29 for all watersheds evaluated, subject to a maximum of 100)	100	0		

^{*} Use additional tables

^{**} These scores are not to be rounded to the nearest integer.

Potential to Release

	Sources	Minimum Size (Y / N)	Containment Factor (Table 4-2)
2. Containment	Tanker Truck	Y	10
			1000000
	A sold to the second		

2b. Runoff		Value	Assigned Value
1.	2-year, 24-hour rainfall =	3 inches	3
2.	Drainage Area = (Table 4-3)	500 acres	3
3.	Soil Group = (Table 4-4)	A	A
4.	Rainfall/Runoff Value (Table 4-5) =		2
5.	Runoff Factor Value (Table 4-6) =		1

10. Population

Actual Contamination						
Intake	Contaminant Detected	Concentration (Note Units)	Benchmark	(A) Apportioned Population Intake Serves	(B) Level* Multiplier	(A x B)
			- No. 2000			

Sum (A x B) Level 1 Sum (A x B) Level II		
	Sum (A x B) Level 1	Sum (A x B) Level II

Level Multipliers
Level I = 10

Level II = 1

SURFACE WAT MIGRATION COMPONENT CALCULA NS (CONTINUED)

	Potential Contamination	
Type of Surface Water Body (Dilution)		
<10 cfs	0	0
0 to 100 cfs		
> 100 to 1,000 cfs		
> 1,000 to 10,000 cfs		
> 10,000 to 100,000 cfs		
shallow ocean zone depth < 20 ft)		
Moderate ocean zone depth 20 to 200 ft)		
Deep ocean zone depth > 200 ft)		
-mile mixing zone in quiet owing river ≥ 10 cfs		

Sum (A)		
At The control of the second s	_0	

19. Population

		Ac	tual Contaminatio	o d		
Fishery	Contaminant	Concentration	Benchmark	(A) Assigned Population Value (Table 4-18)	(B) Level* Multiplier	(A x B)
Sum (A x B) I	evel 1		Sum (A	x B) Level II		

Level Multipliers Level I = 10

Level II = 1

19. Population (Continued)

Potential Contamination							
Fishery	Production (lb/yr)	(P) Assigned Population Value (Table 4-18)	Average Stream Flow at Fishery (cfs)	(DW) Dilution Weighting Factor (Table 4-13)	(P x DW)		

-		The state of the s	STREET, STREET	The second secon		-
9						_
10	A (2) Tales					
	$Sum (P \times DW) = \underline{\hspace{1cm}}$					
	the state of the s					
and the last		The second secon		The second secon		

Sensitive Environments

Actual Contamination						
Sensitive Environment or Wetland Length (Miles)	Containment	Concentration	Benchmark	(A) Assigned Value (Table 4-23 and/or 4-24)	(B) Level Multiplier*	(A x B)
4.570						

		=
Sum (A x B) Level I =	Sum (A x B) Level II =	

Level Multipliers

Level I = 10

Level II = 1

Sensitive Environment or Wetland Length (Miles)	(A) Assigned Value (Table 4-23 and/or 4-24)	Average Stream Flow (cfs)	(DW) Dilution Weighting Factor (Table 4-13)	(A x DW)				

.

Sum of (A x DW)	
Potential contamination = $\underline{\text{Sum } (A \times DW)} = \underline{\hspace{1cm}}$	
10	

SOIL EXPOSURE PATHWAY SCORESHEET

Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
Residential Population Threat				
Likelihood of Exposure				
1. Likelihood of Exposure	550	550	19	H
Waste Characteristics				
2. Toxicity	N/A	10,000	5	E
3. Hazardous Quantity	N/A	10	6	E
4. Waste Characteristics	100	. 18		
Targets				
5. Resident Individual	50	0	20	Н
6. Resident Population				
6a. Level I Concentrations	N/A	0	20	Н
6b. Level II Concentrations	N/A	0	20	H
6c. Resident Population (Lines 6a+6b)	N/A	0		Н
7. Workers	15	5	21	Н
8. Resources	5	0	22	Н
9. Terrestrial Sensitive Environments+	N/A	200	23	E
10. Targets (Lines 5+6c+7+8+9)	N/A	205		E
Resident Population Threat Score				
11. Resident Population Threat (Lines 1x4x10)	N/A	2.03 x 10 ⁶		
Nearby Population Threat				
Likelihood of Exposure				
12. Attractiveness/Accessibility (Table 5-6)	100	5	24	H
13. Area of Contamination (Table 5-7)	100	5	6	Н
14. Likelihood of Exposure (Table 5-8)	500	5		Н
Waste Characteristics				
15. Toxicity	N/A	10,000	5	Е
16. Hazardous Waste Quantity	N/A	10	6	E
17. Waste Characteristics	100	18		E

SOIL EXPOSURE PATHWAY SCORESHEET (CONCLUDED)

Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
Nearby Population Threat				
Targets				
18. Nearby Individual	1	1	25	Н
19. Population Within 1 Mile*	N/A	21	26	E
20. Targets (Lines 18+19)	N/A	22		Е
Nearby Population Threat Score				
21. Nearby Population Threat (Lines 14x17x20)	N/A	1,980		Е
Soil Exposure Pathway Score			ATTEMPORE	
22. Soil Exposure Pathway Score** (S ₂), [(Lines 11+21)/82,500, subject to a maximum of 100]	100	24.62		

⁺ No specific maximum value applies to factor. However, pathway score based solely on terrestrial sensitive environments is limited to maximum of 60.

^{*} Use additional table.

^{**} Do not round to nearest integer.

SOIL EXPOSURE CALCULATIONS

19. Population Within 1 Mile

Distance (miles)	Population	(A) Distance-Weighted Population Values (Table 5-10)
0 to 1/4	2,637	41
1/4 to 1/2	6,642	65
1/2 to 1	18,817	102

Nearby Population Threat Factor Value =
$$\frac{\text{Sum (A)}}{10}$$
 = 20.8 (21)

Reference: U.S. Environmental Protection Agency, Office of Toxic Substances. Graphic Exposure Modelling System (GEMS). March 1989.

IR MIGRATION PATHWAY SCORESH

Factor Categories	Maximum Value	Projected Score	Rationale	Data Quality
Likelihood of Release				
1. Observed Release	550	0	27	E
2. Potential to Release	500			
2a. Gas Potential	500	340	28, see calc.	E
2b. Particulate Potential	500	310	29, see calc.	E
2c. Potential to Release (Higher of Lines 2a or 2b)	500	340		E
3. Likelihood of Release (Higher of Lines 1 or 2c)	550	340		E
Waste Characteristics				
4. Toxicity/Mobility	N/A	200	5	E
5. Hazardous Waste Quantity	N/A	10	6	E
6. Waste Characteristics (Table 2-7)	100	6		E
Targets				
7. Nearest Individual	50	7	25	Н
8. Population*				TIE SI
8a. Level I Concentrations	N/A	0	27	E
8b. Level II Concentrations	N/A	0	27	E
8c. Potential Contamination	N/A	17	30, see calc.	E
8d. Population (Lines 8a+8b+8c)	N/A	17		E
9. Resources	5	0	31	н
10. Sensitive Environments*				
10a. Actual Contamination+	N/A	0	27	E
10b. Potential Contamination+	N/A	3	see calcs.	E
10c. Sensitive Environments (Lines 10a+10b) ⁺	N/A	3	V Salesa	E
11. Targets (Lines 7+8d+9+10c)	N/A	27		E
Air Pathway Migration Score				
12. Pathway Score (S _a) [(Lines 3 x 6 x 11)/82,500]**	100	0.67		

- Use additional table.
- ** S_a is not to be rounded to the nearest integer.

 + No specific maximum value applies to factor. However, pathway scores based solely on sensitive environments is limited to a maximum of 60.

Gas Compound	Vapor Press	Henry's Const.	Sum	Table 6-6 Gas Migration Potential (C)	Toxicity
Naphthalene	1.02 x 10 ⁻¹ (2)	5.5 x 10 ⁻⁴ (2)	4	11	1,000
Pyrene	8.4 x 10 ⁻⁹ (0)	1.7 x 10 ⁻⁸ (0)	0	0	0
Benz(a)anthracene	3.6 x 10 ⁻⁸ (0)	1.9 x 10 ⁻⁶ (1)	1	6	0
Вепхо(а)ругепе	5.6 x 10 ⁻⁹ (0)	4.0 x 10 ⁻⁸ (0)	0	0	10
Toluene	7.84x 10 ¹ (3)	6.8 x 10 ⁻³ (3)	6	17	10
		IL SAL			
	The second second second				
	WARE WATER				
		15.12.13.13			

Sum of Gas Migration Potential = 34 Average Gas Migration Potential = 6.8

Gas Migration Potential Factor Value (Table 6-7) = 6

Particulate Migration Potential Factor Value (Figure 6-2) = 17

AIR PATHWAY CALCULATIONS

2. Potential to Release

	Gas Potential to Release					
Source	Source Type (Table 6-4)	Gas Containment Factor Value (Table 6-3) (A)	Gas Source Type Factor Value (Table 6-4) (B)	Gas Migration Potential Factor Value (Table 6-7) (C)	Sum (B+C)	Gas Source Value (A x (B+C))
1.	Waste Oil Tank	10	28	6	34	340

Gas Potential to Release Factor Value = 250 (Select the highest Gas Source Value)

	Particulate Potential to Release					
Source	Source Type (Table 6-4)	Particulate Containment Factor Value (Table 6-9) (A)	Particulate Source Type Factor Value (Table 6-4) (B)	Particulate Migration Potential Factor Value (Table 6-2) (C)	Sum (B+C)	Particulate Source Value (A x (B+C))
1.	Waste Oil Tank	10	14	17	31	310

Particulate Potential to Release Factor Value = 390 (Select the highest Particulate Source Value)

AIR PATHWAY CALCULATION (CONTINUED)

8. Potential Contamination

Distance (miles)	Population	(A) Distance-Weighted Population Value (Table 6-17)
On site (0)	8	4
> 0 to 0.25	100	13
> 0.25 to 0.5	200	9
> 0.5 to 1	300	3
> 1 to 2	3,399	27
> 2 to 3	25,067	38
> 3 to 4	44,745	73
> 4		

Sum of (A) =	167	
Out 01 (11)		
		- 2 Table 1500 (150)

Air Potential Contamination Factor Value = Sum of (A) =	16.7 (17)	1
10		

10. Sensitive Environments

and the second	Actual Con	tamination	and purpose
Wetland or Type of Sensitive Environment	(A) Sensitive Environment Rating Value (Table 4-23)	(B) Wetland Rating Value (Table 6-18)	(A + B)

Actual Contamination Factor Valu	$e [Sum (A + B)] = \underline{\hspace{1cm}}$		

PATHWAY CALCULATIONS (CONTIN))

		Potential Cor	ntamination		
Wetland oe Type of Sensitive Environment	(A) Sensitive Environment Rating Value (Table 4-23)	(B) Wetland Rating Value (Table 6-18)	Distance (miles)	(DW) Distance Weights (Table 6-15)	DW x (A + B)
California Black Rail	50		0-1/4	0.25	12.5
Western Yellow Billed Cuckoo	50		0-1/4	0.25	12.5
Least Bells Vireo	100		4	0.0014	0.14

Sum DW x (A + B) = 25.14

Potential Contamination			
Sensitive Environments Factor value	$= \underline{Sum \ DW \ x \ (A + B)}$	= 2.521 (3)	
	10		

RATIONALE

- 1. There is no documentation of a release to groundwater from the site and it is not likely that an observed release may documented.
- 2. There is no run-off containment system present and there is documentation of a spill onto surface soils at the site. (Peterson, Matthew and Jones, Rick, California Department of Health Services. <u>Inspection Report</u>. July 21, 1989.)
- 3. Net precipitation near the site is 7.8565 inches. (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, National Climatic Data Center. Comparative Climatic Data for the United States Through 1985. Nashville Tennessee; and Federal Register, Volume 53, Number 247, Proposed Rules, 52029-52030. December 23, 1988.)
- 4. Depth to the aquifer from which potable water is drawn is approximately 130 feet. Soils underlying an area near the site are composed of alternating layers of sand/gravel and clay. The total thickness of clay undelying the area is 76 feet. (Jensen, Gary, ICF Technology Inc., and Skvarek, Andy, City of Pomona Water Department. Telephone conversation. October 16, 1990.)
- 5. Total petroleum hydrocarbons (TPH) were detected in on-site soils. It is assumed that the TPH consisted of napthalene, pyrene, benz(a)anthracene, and benzo(a)pyrene. Toxicity and mobility for the groundwater and air pathways were evaluated using napthalene. The toxicity/persistence value for the surface water pathway was evaluated using lead and napthalene, while the soil exposure pathway was evaluated using only lead.
- 6. Because the amount of waste oil stored on site during its years of operation as a waste oil recyclery, a default waste quantity value of 10 was assigned for all pathways. (Peterson, Matthew and Jones, Rick, California Department of Health Services. Inspection Report. July 21, 1989.)
- 7. The nearest drinking water well is located 0.25 miles from the site. The well is one of several wells operated by City of Pomona Water Department which serves drinking water to approximately 120,000 people. (Jensen, Gary, ICF Technology, Inc. to Skvarek, Anthony, City of Pomona Water Department. groundwater and Surface Water Information, Telephone conversation. October 16, 1990).
- 8. The City of Pomona obtains 10 to 14 percent of its water from a surface water source, San Antonio Canyon, and the remainder of its water from the city's wells. There are a total of 28 wells which serve drinking water to Pomona. Of the wells in the district there is only 1 that draws water from the aquifers which underlie the site. The city wells draw water into resevoirs where the water is blended before being distributed to approximately 120,000 residents. Each well contributes close to the

same amount of water to the system. Thus, approximately 4,286 people are estimated to be served by each well. (Jensen, Gary, ICF Technology Incorporated, and Sihler, Charles, City of Pomona Water District. Telephone conversation. December 10, 1990.)

- 9. Water in the area is used for drinking purposes. It is assumed that groundwater is also used for commercial food preparation. (Jensen, Gary, ICF Technology, Inc. and Skvarek, Anthony, City of Pomona Water Department. Telephone conversation. October 16, 1990).
- 10. It is assumed that the site is not in a well head protection area.
- 11. There is no documentation of a release to the surface water and it is not likely that an observed release may documented.
- 12. There is evidence of a spill of product oil onto surface soils at the site. (Peterson, Matthew and Jones, Rick, California Department of Health Services. <u>Inspection Report</u>. July 21, 1989.)
- 13. The run-off value of 1 was based on the following.
 - The 2-year 24-hour rainfall for the site is 3 inches. (U.S. Department of Commerce, NOAA, National Weather Service. <u>NOAA Atlas II, Precipitation-</u> <u>Frequency Atlas of the Western United States</u>. Volume XI-California, pg. 61. Silver Spring, MD. 1973.)
 - The drainage area for the site is approximately 500 acres. (U.S. Department of the Interior, Geological Survey. San Dimas Quadrangle, California. 7.5 minute series, topographic. 1966, Photorevised 1981.)
 - The site is underlain by soil classified as Type A. (Jensen, Gary, ICF Technology, Inc. and Skvarek, Anthony, City of Pomona Water Department. Telephone conversation. October 16, 1990).
- 14. The San Jose Creek boarders the site to the south. (Ward, Kim, California Department of Health Services. <u>Inspection Report</u>. August 11, 1987.)
- 15. There is no certification by a professional engineer that containment at the source is adequate to prevent any washout of hazardous substances.
- 16. The site lies in a 100 year flood plain. (Jensen, Gary, ICF Technology, Inc., and Patel, Budi, San Bernardino County Department of Land Development. Telephone conversation. October 4, 1990.)
- 17. The San Jose Creek is a seasonal creek which is not used for drinking water, industrial use water, irrigation water, or for fishing. (Jensen, Gary, ICF Technology,

Inc., and Skvarek, Authory, City of Pomona Water Department. Telephone conversation. October 4, 1990).

- 18. There are no state or federally threatened or endangered species within 15 miles downstream of the probable point of entry of hazardous substances into the San Jose Creek. (California Department of Fish and Game. Natural Diversity Database, San Dimas, Baldwin Park, and La Habra Quadrangles. April 1, 1989.)
- 19. Sampling of surface soils indicated levels of TPH at 650 ug/Kg and 1500 ug/Kg within 200 feet of a workplace. (Jensen, Gary, ICF Technology Inc., and Peterson, Matt, California Department of Health Services. Sampling Results at Omega Oil Company. Telephone conversation. December 5, 1990.)
- 20. There is no resident population at the site.
- 21. There are approximately 6 workers at the site. (Peterson, Matt, California Department of Health Services. <u>Penalty Worksheet</u> (Omega Oil Company). September 1, 1989.)
- 22. There is no commercial agriculture, silviculture, or livestock at the site.
- 23. The site lies within 4 miles of the habitats of at least 3 known state or federally threatened or endangered species. (California Department of Fish and Game. Natural Diversity Database, Ontario and Prado Dam Quadrangles. April 1, 1989.)
- 24. The site is protected by a continuous chain-link fence. (Operational Plan for a Hazardous Waste Facility. Not dated.)
- 25. The site is located in an industrial area. The nearest residential area is located approximately 0.25 miles from the site. (Jensen, Gary and Peters, Belinda, ICF Technology, Incorporated. Site drive-by. September 11, 1990; and U.S. Department of the Interior, Geological Survey. San Dimas Quadrangle, California. 7.5 minute series (Topographic). 1966. (Photorevised 1981)
- 26. Approximately 28,096 people live within 1 mile of the site. (Jensen, Gary and Peters, Belinda, ICF Technology, Incorporated. Site drive-by. September 11, 1990; U.S. Environmental Protection Agency, Office of Toxic Substances. Graphic Exposure Modelling System (GEMS). March 1989.)
- 27. There is no documented release to the air and it is not likely that an observed release may documented.
- 28. The gas potential to release value of 340 was based on the following:
 - a source type factor value of 28 based on waste oil tank.

- a gas containment factor default value of 10.
- a gas migration potential factor value of 6 based on the average gas migration potential for all hazardous substances evaluated.
- 29. The particulate potential to release value of 310 was based on the following:
 - a source type factor value of 14 based on waste oil tank.
 - a particulate containment factor default value of 10.
 - a particulate migration potential factor value of 17 based on the site location.
- 30. The site is located in a mostly industrial area with a total population of approximately 73,211 people located within 4 miles of the site. (Jensen, Gary and Peters, Belinda, ICF Technology, Incorporated. Site drive-by. September 11, 1990; U.S. Environmental Protection Agency, Office of Toxic Substances. Graphic Exposure Modelling System (GEMS). March 1989.)
- 31. There is no known agriculture, silviculture, or major recreation area within 1/2 mile of the site. (Jensen, Gary and Peters, Belinda, ICF Technology, Incorporated. Site drive-by. September 11, 1990; and U.S. Department of the Interior, Geological Survey. San Dimas Quadrangle, California. 7.5 minute series, topographic. 1966, photorevised 1981)
- 32. For the surface water pathway, the toxicity/persistence/bioaccumulation and the ecosystem toxicity/persistence/bioaccumulation values were evaluated using benzo(a)pyrene.